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MONTE CARLO SOLUTION FOR THE CHARACTERISTICS OF A
HIGHLY RAREFTED IONIZED GAS FLOWING THROUGH A
CHANNEL WITH A TRANSVERSE MAGNETIC FIELD
by Morris Perlmutter

Iewls Research Center

SUMMARY

The steady flow of a highly rarefied ionization gas through a channel with
a magnetic field normal to the channel wall is studied. The solution i1s ob-
tained by a Monte Carlo procedure. This method consists of following sample
ions through the channel, By tallying properties of these ions as they pass
scoring cross sections of the channel, the various local properties of the
flows such as density, mass flow, energles, and wall shear stress are obtained.
These results for the small magnetic field cases were compared with the limit-
ing analytical solutions for no magnetic field and were in good agreement with
them.,

INTRODUCTION

There is a growing interest in the flow of highly rarefied ionized gases
through a magnetic field. This interest is due to the many new engineering
applications in such fields as thermionic power conversion, fusion research,
and reentry problems. The equations to be solved for the flow of a fully
ionized gas through a channel for collislonless rarefied gases are very complex
and not readily solvable by the usual analytical procedures (ref. 1).

The Monte Carlo procedure was used in the present case to obtain the
various flow characteristics and to give an insight into the behavior of the
flow of a collisionless rarefied fully ionized gas through a flat plate channel.
These solutions can be used for comparison with other techniques and also to
illustrate the use of the Monte Carlo technique for similar types of problems.

The present model consists of a finite length channel of infinite depth
as shown in figure 1. There is a uniform magnetic field Bz normal to the
channel wall. The left and right end of the channel are open to reservoirs
containing a fully ionized gas in a Maxwellian distribution of velocities at
the same temperatures but different densities and pressures. The mean free
path in the gas is considered large compared with the dimensions of the channel



so that interionic collision effects can

& -~ Magnetic tield lines, By be neglected in the channel. The only
r—_}__T, v o, collisions inside the channel will be by
T 1 x| £ ; T the ions with the walls. The ions are
* “ % | E | * | I assumed to be reflected from the walls
LT o i 1 | I | £+ 1 % diffusely with a velocity distribution
0 o] T T I | EE_J- based on the temperature of the wall. It
2 Xoq T I 7T is assumed that the wall is at the same
i AVEAWW i temperature as the reservoirs, The elec-
X3 L trical charge of the molecule is assumed
Figure 1, - Model. unchanged by the wall reflection., Other

conditions can be readily assumed by using
a similar Monte Carlo procedure. The ionized gas can be considered to be com-
posed of positive, negative, and neutral molecules. In the present model each
specie can be treated independently since the interaction between them is con-
sidered negligible, and then these solutions can be summed to give the overall
results.

The Monte Carlo procedure consists of following the probable history of
a sample charged ion through the channel., By use of a high-speed electronic
computor a large number of these sample histories can be carried out in a short
time and from these the desired mean quantities are obtained. This method
follows the techniques used in solving thermal radiation problems by Monte
Carlo and is described in reference 2.

The through-flow and transverse mass flow profiles, the local density,
and the temperatures as well as the wall shear stress distribution are given.
These results are obtained by scoring various properties of the molecules as
they pass different cross sections of the channel. The solution for the case
of neutral molecules or the case of negligible magnetic field has been obtained
analytically (ref. 3) and is used as a limiting case check on the Monte Carlo

results.

SYMBOLS
B2 magnetic flux density
C number of molecules represented by sample molecule, m/MN
D height of channel
B kinetic energy
e charge of molecule
f velocity distribution of molecules
™ Maxwellian velocity distribution
fﬁ Maxwellian distribution of molecules moving in positive x7-
direction
£ scoring cross section along x5
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length of channel divided by height

mass of molecule

mass flow rate per unit area

mass flow in from left reservoir, pL/(Zﬂl/ZB)

nuniber of trial molecules entering channel per unit time per unit
area

number of sample molecule

pressure

shear stress on surface in xl—direction
quantity being carried by sample ion

increment number along X3

random number between O and 1

gas constant

Larmor radius divided by channel height, (ﬁDw)—l
number of molecules passing through increment
temperature

components of mean flow

molecular velocity

dimensionless velocity in X;,xz-plane
dimensionless molecular velocities in coordinate directions, V/Dw
coordinates divided by channel height D

section of channel

parameter (ZR‘I‘)'l/2

angle (see fig. 3)

polar angle

density

time multiplied by cyclotron frequency o



¥ cone angle

w eBz/M cyclotron frequency
Subscripts:

av average

i initial time, 7 = O

L left reservoir

£ location along xq

M marginal distribution

m Maxwellian

P increment number along Xp

R right reservoir

W wall

N, 1L lower or upper wall, respectively
@A) integration over all velocities in plus xz—direction
Superscripts:

(M) mean value, f( yr @y

+ in positive xy-direction

- in negative xj-direction

! undirected component

MONTE CARLO PROCEDURE

The model (fig. 1) consists of two plates whose length divided by the
channel height is 1. The plates are infinite in depth. There is a magnetic
field of strength Bz normal to the plates., The gas in the left reservoir
has a density o1, while the right reservoir is at PRe The molecules are of

mass M and charge e. The molecules in both reservoirs are assumed to be in
Maxwellian equilibrium at the same temperatures but different pressures and
densities. It is assumed that there are no interionic collisions in the chan-
nel because the mean free path is large compared with the dimensions of the
channel.

The Monte Carlo procedure consists of following probable histories of
sample molecules through the channel. All of the sample molecule histories

4



begin at the channel entrance

x3 = 0. The number of molecules Cr that each
sample molecule entering from the left reservoir represents is given by

G - (1)
L_MI\TL

is the mass flow rate per unit area, my, = pL/(an/ZB), entering the
channel (refs. 3 and 4) Np is the number of trial molecules used per unit
entrance area per unit time.

where m

The Monte Carlo flow chart used in the present calculations is shown in
figure 2. The sample molecule history begins with the molecule entering the
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Figure 2. - Monte Carlo flow chart.



channel from the left reservoir. The position xp; representing the height at
which the molecule enters the channel is given by R, where R 1is a randomly
chosen nunmber between O and 1, This is true because the molecules are equally
1likely to enter the channel at any value of x,., The magnitude of the speed of
the molecule V;, and the angles V and 6, which determine its direction, as
derived in the appendix (eq. (A5) or (A9)), can be obtained from

2 =12
Ry = (} + Eg):a.v /ra )
or . & (23)
7 = - 1n(RiRy) J
Rg = o (2b)
Ry = sin2y (2¢)

where each R represents a new random number, v 1is the dimensionless velocity
that goes from O to », ¥ is the cone angle from O to /2, and 6 is the polar
angle from O to 21, Then the initial components of velocity of the sample
molecule that enter the channel from the left reservoir are

Vqp, = vV cos ¥ (3a)
Vor, = V 8in ¥ sin 6 (3b)
Vvgr, = v sin ¥ cos 6 (3c)

By choosing random nurbers between O and 1, we can obtain a velocity and
direction for the molecule entering the channel that, when taken over a large
nunber of trials, will satisfy the correct theoretical distribution as given in
equation (A3). These velocities are determined at (1) in the flow chart, where
( ) refers to a particular location in the flow chart. After the ions enter
the channel, their behavior will be determined by the relations (ref. 5)

dvl
-_—d_"[ = —'V'3 ( 4:8’)
d.Vz

= =0 (4v)

@™ N (4c)

which are the equations of motion for an ion through a magnetic field. The T
is the nondimensional time given in the nomenclature. These equations can be
solved to give the velocity components as a function of time:
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Vi = Vq4 cos T - vzi sin T (5a)
Vg = Va1 (5p)
Vg = Vg sin T + vz4 cos T (5c)
where the subscript i refers to time T = O.

The positions of the molecule as a function of time can be obtained from

(Xl - Xp4) = Vq; sin T+ Vg4 (cos T - 1) (6a)
(xp - xp3) = vpyT (6b)
(xz - Xz3) = Vz; sin T + v9;(1 - cos T) (6c)

The ion will travel in a helical path that is circular in the x;, xz-plane and
will move with a constant component of velocity in the #x,-direction. The
radius of the circular ion path in the Xy, Xz-plane, called the gyromagnetic
radius, divided by the distance between the plates is

1/2
2 2
6’11 * V3i)

The average gyromagnetic radius divided by the width of the channel for all the
molecules based on conditions in the left reservoir is

— 2
Tq = (vJZ_L * V%L) = BDw (8)

which is equal to the Larmor radius divided by the width of the channel. The
term VJZ_L is equal to f VJZ_LfM dBV.

We can define vy = vp cos ¥ and

vi vz = VR sin ¥, while vq; = v cos v; and
max vz; = Vg sin 1y (fig. 3). Substitution into equa-
Y3 max N\ V3i tion (5a) or (5¢) gives T =71 - vy. The angle Y
v can then be calculated from the following equation:
Y
R T .
VR VR
'3 V3 min The component of velocity v, 1is unchanged by the
' magnetic field, and the time at which the sample
Tmin ion will strike the upper or lower wall after

entering the channel is T, = (1 ~ X5:)/Vveos oOT
Figure 3. - Velocity relations. & w ( 21) / 21

Ty = =Xpi/vo; (see fig. 2, (3)). Also, the posi-



tion x7 at time 7T can be determined from equation (6a) to be
Xp - Xqq = vR[sin('r + 7y) - sin T:-;I = VR[Z sin -g— cos <Ti + %):I (10)

It is necessary to know the time T that a molecule will reach some€ given
position x7 = £. This can be obtained from equations (5c) and (6a) since

g - Xq3 = Vzg = V

(11)
V. =% [v2 - v2 1/2
18 R 36
where the + and - are used according to the direction the molecule is

traveling., Substitution into equation (9) gives Yoo which can be used to find
the time, Tpg = vp - T3. With the time known, the various parameters that are
scored can be obtained, From equation (6a) evaluated at time Ty, The position
X1, Where the molecule strikes the wall, is obtained (5).

The sample molecule may reach a maximum value of x3, however, and then
start to circle back before striking the wall, This maximum value of x7 will
occur in this case at Tpgy = n/2 - T3 (4) (see fig. 3). Then if Tpax 18
less than Ty, the molecule will turn before striking the wall, and X] max is
evaluated at Tpgx {(6). If the molecule passes a value of x3 =0 (7), its
important characteristics are tallied (8)., In the present case § was taken
at 0, 1/4, 1/2, 31/4, and 1. It may pass the exit plane (9) at which point it
is tallied and a new molecule is started., If the molecule strikes the wall
this is scored in the appropriate wall increment (ll), and the molecule is re-
emitted from this point in a new direction with a new velocity (12). The new
direction is picked from a population based on diffuse reflections from the
walls, and a new velocity from a population based on a wall temperature, which
in this case is taken equal to the temperature of the reservoir. This means
v, 6, and  are obtained from equations (2a), (2b), and (2¢).

The components of velocity from the lower wall are now given by (12a)
Vip =V sin ¥ sin 6
Vop = V COS ¥ (12)
Va\ =V sin ¥ cos 6
while for the upper walls (12b)
Vip =V sin Vv sin @
VZM = =V cos V¢ (13)
V3, =V sin i cos &

If the molecule is reflected from the wall with a positive vj-component, the
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molecule goes through a similar procedure as just described (13); however, if
the molecule is reemitted with a negative component of vy, then 1T, is com-
pared with 71p5,, the time for the molecule to reach its minimum value of Xq .
As seen from figure 3 this is given by Tyin = (31/2) - v3 (14). Then X1 min
is calculated from whichever time is smaller, Tpi, Or Tyall (15). Again’ the
pertinent values are scored each time the molecule passes a scoring position,
X] = £ (lG). If the molecule leaves the entrance it is scored (17) and a new
molecule is started; however, if it does not leave through the entrance, it may
hit the wall (11) in which case it is tallied and reemitted as discussed
before. If it does not hit the wall or leave the channel, it will start to
circle back, and now Tygx = Tmin + ® (fig. 3) and the usual procedure con-
tinues (19). If it reaches its maximum value of x7 and does not leave the
end of the channel or strike the wall, it will again circle back with

Tmin = T + Tpax (fig. 3) and the molecule i1s followed as before (20). When DN
molecules have been followed, the results are printed out and the program is
stopped (21).

MEAN FLOW VATLUES
Transport of Some Ton Property Q in Channel

At some point along the channel length xq = , the channel height is
divided into increments of width Axs. In the present case 20 increments
across the channel height were used., Increment p 1is given by
D = (XZ/AXZ)integer + 1, The amount of @ +that is being carried across the

incremental area Ax, in the positive and negative xj3-directions is then
given by

g+ Sy
' D &% - M

‘L (§ - % Q)L

£p
. 22
D Axo *

- Savir adv
(14)

where the subscripts L and R denote the sample molecule origin in the left
or right reservoir., The terms S* and 8~ are the number of sample molecules
passing through the increment in the positive xj- or negative xq-directions,
respectively. Substitubting from the definition of C from equation (1) we
obtain

<§5 %5 )

Q - Q

L L,gp, "R N £ . Ty
D Axo Ny, D Axo Ngr 1

(15)

When myp = mp, pVQ = pViQmLsz. Substracting this from equation (15) gives



gt g-
(Z Q-2 Q)L, gp O - Ty

D AXZNL - mL - mR 7 (16)
The previous operation is possible because there is no interaction between the
st 8-
(Z: Q-2 Q)L £,p
molecules and therefore D 2=2= is independent of mp. A similar
D Axp

relation holds for the sample ions entering frdém the right reservoir.

Mass Flow Profile Through Channel

Since the local mass flow through the channel is given by

pul = Mi‘/.Vif dSV, Q in equation (15) for this case is 1. The u; 1is the
local mean through-flow velocity in the xl-direction and is equal to

./.Vif d3V. The numerical calculations showed that the results for

(st - 87) (st - 87)
) AXL’E’P were equal at x; and 1 - x. By symmetry L,x1,P
L 2 NiD Axg
-(st - 8-
( )R: Z‘Xl:P
is equal to . Using these relations in equation (15) gives
NgD Ax,
u st - s-
IIlL - mR NLD AXZ
Relating this equation to equation (16) shows that pulm 0; that is,
T~IR

when the two reservoirs are at the same condition there is no net through-flow

anywhere in the channel. Equation (17) shows that, for this case, it is only

necessary to consider the sample molecules originating in the left reservoir to

obtain the complete solution. The axial mass profile results are shown in

figure 4. The curves are symmetric between the upper and lower halves of the

channel (pul)X2 = (pul)l N and also symmetric around the front and back ends
-Xp .

of the channel (pul)Xl = (pul)l—xl'
The solid line, which is the analybtical solution for r, =® (ref. 4), is

in good agreement with the Monte Carlo results for r, of 1000. Thus, for

this value of r, +the solution is close to the limiting case for no magnetic

field. Also the fact that the results are in agreement for the two different
methods indicates the validity of the Monte Carlo procedure.

10
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Figure 4, - Axial mass flow profile.



The average mass flow through the channel can be obtained from equa-
tion (17) by summing the results for each increment and then dividing by
the number of increments:

/S
g+
m, - mg © \ DAL (18)
L,i,p

where ( S+)L 1,p is the total number of trial molecules leaving the right end
J ¥

of the channel through the increment Ax,. These results are shown in fig-
ure 5. It can be seen that as r, decreases, the mass flow through the chan-
nel decreases. This is true bhecause, for small values of rg, the charged
molecules are trapped to rotate in small circular orbits around the magnetic

lines of force,

1.0
Transverse Mass Flow

————Fitted curve

The flow in the xz or depth
,~ Analytical solution, ~ Larmor radius direction is given by

T 6 ir, =) divided by chan- o
g I‘\‘ o nel ':e'gh"' puz = M J(; -Vzf dV; then in equa-
Bapht N ’
=4 NG 1000 tion (15) for this case Q = V5/Vl' The
£ \ ~

9 _\\\ \\\\ numerical calculations showed that the

NN S—— ! results for

Np - .33
Y~ T ~p——ggp

+ -
0 1 2 3 a3 5N vz & s
l )

V1
Figure 5. - Average mass flow through channel. L, Elp
NLD AXZ

were the same at x3 and 1 - x7. If the same procedure is followed as
before, (puz) = 0, and we obtain
mL=mR

- -
puz z V1 V1

mp - Mp NLD sz

LL,p (19)

As for pUq the flow puz 1is symmetric around the midplane parallel to the
channel walls puB,X2 = pu?),l-xz and it is also symmetrical around the mid-

Plane between the front and rear ends of the channel; puz ¥ = PU3 -Z—Xl'
2 2
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The average transverse flow through the channel can then be obtained by

summing the flow across the channel and dividing by the channel height:
1/nxpofs s~

RN IR
(puz) gy V1

I v ~ "1)1,8,p
mr, - MR NLD ’

These results are shown in figure 6., When there is no magnetic field
1/ra = 0 and the transverse flow is zero,

(20)

The transverse flow begins to de-

Channel
length
Length coordinate divi@ed by
divided by chan- height,
28— nel height, 61— 1
PN 1
\Xl \\\ O 5
0= Q\ 0 \3\1/4 2?1/2 5‘?_ A:& —~——— Fitted curve
AN Vo 0
16 [~ \q ¢ d 4 Q\\\ \\ \\
1 \ Iy
P \ !/ 7 3 é %Db\ N x\xl
’ Y Jot \ W\ lM} I
| i 2| W A 4 2
8 V4 // —\ \ UZR /
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ar s == ! (p A -
/‘o 4’” /j&r ——
- ”/ —
L e =TT 1 | | ] Lag="" i 1l | '
0 1 .2 3 4 .5 .1 .8 90 .1 .2 3
(PU3)aVI(m|_ - ﬂ'IR)
(@) Channel length divided by height, 1 =0.1. {b) Channel length divided by height, 1 = 1.0and5.
Figure 6. - Transverse flow across channel.
creage for large wvalues of l/ra corresponding to large magnetic fields. This

is true because the molecules are making orbits of very small radii around the
magnetic lines of force, thereby preventing any large mass flows. The results
indicate that the maximum value of the transverse flow occurs in the middle of
the channel for values of 1, of approximately half the channel length. The
largest transverse flows occur in the smallest length channels, 1 = O.l.

Density Profile

The local density is given by p =M

£ av. Then Q = 1/Vl in equa-
tion (15).

The numerical calculations obeyed the relation

13



st s~ s* s~
LT 2%
v v R T
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(a) Channel length divided by height, U = 0. 1. (b) Channel length divided by height, L = 1.0.

Figure 7. - Density and energy distributions in channel.
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Following the same procedure as before, we find that P, and we ob-

= =p}
tain mR R

st s”
' z :;L - E;.&;
- v v
p PR _ 1 1 L,8,D

(21)
- PR D £,y (2+/7)rat

P1,

These results are shown in figure 7. The limiting solution of zero
magnetic field agreed well with the Monte Carlo solution for rg; = 1000. As
r, Dbecomes smaller, the densities in the channel near the reservoirs approach
the density of the reservoir more closely. The densities are symmetrical
around the midplane xp = 1/2; thus,

P = PR P = PR

and are related around the midplane X, = 2/2 of the channel by

P - PR + p = PR -1
P, = PR xq L, - PR Z‘Xl

Local Kinetic Energy

The kinetic energy at some location is given by pE =(M/2)j%2f dv. Then
Q in equation (15) for this case is V2/2V1. The numerical calculations
obeyed the relation

st S~ st s
vi-%%),, LErs
V1 Vi 1 Vi
L,xq,p + L,1-%9,p 1
3+/% D MxpNpr, 3+/n D AxplNpry

Then following the same procedure as before, we find that (pE)mL:mR = SQR/454,
which is the kinetic energy in the reservoir (ref. 3), and the solution reduces

to
st s~
2 2
162 (pE) - p EE: %%f '-:E: ¥i
3 R _ L,&,p
o < p = (22a)
L~ FRr 3~/n D £xgNpry :
Again there is symmetry around the midplane Xo = 1/2 of the channel,
15
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2 2
4 4
—;L (PE) - pg —%— (pE) - op
Pn P op
R XZ L R l—X2 .

Il

PL,
while around the plane x; = 1/2 of the channel,

2 2
4 4
—%—- (pE) - oy -—%— (pE) - pg
+ =1
PL - PR %1 °L ~ PR 1-x;

For zero magnetic field (ref. 3) it was shown that (pE) = 3p/4pe. TFor

. T
this case a=co

2
48
Pr = P T\Pp =P
L R g o T R =oo

The results plotted in figure 7 show that for smaller values of 1rg the

2
value of é%—-(pE) is no longer equal to p as for the nonmagnetic case, but

has decreased near the entrance of the channel and increased near the exit.
This is true because the higher velocity molecules have a larger gyromagnetic
radius and so diffuse more readily down the channel than the slower moving

molecules.,

Collision Rate With Walls

The mass flow rate incident per unit area on the upper wall and then re-
flected can be cbtained as follows: The channel wall is divided into incre-
ments of width Axq. In the present calculations, 20 increments along the
channel surface were used. At a particular increment ¢, given by
g = (Xl/axl)integer + 1, the nunber of sample molecules colliding into this

increment is scored:

cr(8,) Cr(S,)

TAPg /L R\®g¢’'R 1 B

D Axy | D oxy _MmW”fAvgde (23)
This can be rewritten as

-
L
M P A (U T ERD An (2

From the numerical calculations it was noted that
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S S
( L)q.)Xl ( L:q) Z—Xl

+ =1
NiD Ax; | NpD &%
Since by symmetry "
(81,,4) (SR, q)
L’q' Z"Xl B R,q Xl
NLD Axl NRD Axl
we find that (mw)mL=mR = mp -~ and equation (23) becomes

e (Sq)L

= (25)

d‘i-\?ird?grb;acdi::;— Analytical solution (ry = =)

nel height, ——— Fitted curve to Monte Cario
results

Ta
0.2

9 o

. >A\33 =N

10

[(mw - mhllmy_ - mR)] wal

{a) Channel length divided by height, 1 = 1.0. (b} Channel length divided by height, L = 5.

Figure 8. - Mass fiow reflected from wall.

These results are shown in figure 8. Again there is good agreement between the
limiting analytical solution for r, = o and the Monte Carlo solution for

rg = 1000. For the smaller values of rg the mass flow reflected from the
wall near the reservoir is closer to the mass flow into the reservoir. These
results are the same for the upper and lower walls and are related around the
channel midplane x; = p/2 by

my - m my - I
L R X, L R 1-xq
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Shear Stress at Wall

The shear stress on the surface in the xl-direction is given by

Pxq,%5 = (-pViVé)W, where V' is the random component of wcelocity:

V = V' + u, where fV'f a%v = 0. Since u, at the wall is zero, (—pViVé)W
is equal to (—leVZ)W. Since the ions are reflected diffusely they do not con-

tribute to the surface shear; thus, the result is

84 Sq
—_— c V4 } C v
oV} LzlL RZlR
= .J,r. XTJ:Vzai? (1\7 = + ( 23(3)
M e Uy - D 2% D Axp
As before from the numerical calculations
< > ) (Sq )
V Vv
Z 1 L,Xl _ E 1 L, Z-Xl
D Ax Ny, D AxqNy,
and proceeding in a similar menner, we find (leVZ) = 0 and obtain from
. W,m]'_,=mR
equation (26)
<pv'v'> E vy
W L [
= o (27)

2 2\ -1
m m 1/2
(_E _ _R_) Axll\TLDra(Zﬂ / )

P, PR

Py

Larmor radius These results are shown in fig-

fr”a,'ﬁi)ca' solution i ided by chan- ~ ure 9 and are the same on the upper
Lok ——— Fifted curve nel height, and the lower walls. The results are
fa also symmetrical around xq/1 = 0.5.

.8%/0__0_0—0—0—0—0_0' 1000 The shear stress for r; of 1000 is
5

seen to agree well with the non-
o—0--0—0-0-0- 1 magnetic analytical solution. The
shear stress is seen to decrease for

smaller values of Tge Since this

corresponds to smaller values of mass
flow through the channel, this result

would be expected.

Lo—0-0~ 0O~

(=,

Pruig/[[% o8)- (1t ]

O 0—0--0-0—0-0—0- -0~ .33

l I I | I
0 .1 .2 .3 4 .5
Xlll

Figure 9. - Wall shear distribution, Channel length
divided by height, 1= 1.0.
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CONCLUSIONS

The effect of the increasing magnetic field is to reduce the mass flow of
the ions through the channel., The magnetic field also causes a transverse
mass lon flow to occur perpendicular to the through-flow and parallel to the
channel walls. This transverse flow reaches a maximum and then decreases as
the magnetic field becomes stronger. The decrease is due to the strong magne-
tic field +trapping the charged particles.

The Monte Carlo solution worked well with this problem. The major draw-
back was the large amount of computer time necessary to run the analysis.
Generally, 200,000 sample ions were needed for each case to reduce the scat-
ter in the results. A lesser number of trials gave points falling around the
correct solution but with larger scatter. The trials were run on an IBM 7094
computer and each case ran approximately 45 minutes. The amount of time each
sample ion ran would increase with longer channels and higher magnetic fields.
The scatter is decreased if a large nunmber of sample ions are tallied at a
particular position so that more meaningful statistical averages.can be ob-
tained. More advanced techniques such as splitting or Russian roulette could
be used to decrease the computing time. With this Monte Carlo procedure,
other boundary conditions can readily be used and the method could be extended
to include interionic collisions.

Iewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 21, 1964
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APPENDIX - ENTERING TON SPEED AND DIRECTTON

The number of molecules moving in the xj-direction f d5V where
d5V = dVq dVp dVz with the velocity in the range adv for an assumed
Maxwellian distribution, is given by

Ly L PP a (a1)
fir d = e” dv, dv. A Al
M ﬁ372M 1 2 3

where V2 = VE + Vg + V2, The number of molecules entering the channel per

unit time per unit area in the incremental velocity range of a3y  from the
left reservoir is given by dmy/M = Vlfﬁ a3y, TIf this is integrated over Vq

from O to «» and Vp and, Vz from -= to +w, the total flow entering the
channel is my = pL/ZBﬂ /2. The distribution of velocities of the ions
entering the channel from the left reservoir then can be written as

2p4m 2¢2
P L e BT a3y (a2)

-+

This can be transformed into spherical coordinates where Vi =V cos ¥,

Vo =V sin ¥ sin ¥ sin 6, and Vz =V sin ¥ cos 0, where ¥ 1is the cone angle
measured from the xj-axis and 6 1s the polar angle measured from the

%1 ,Xz-plane. Then equation (A2) can be written as

-+
v, £ asv 2

4 2y2
M B- y3e~BV® cog v sin ¢ dy d@ dv (A3)
This gives the fraction of all the molecules in the ranges dV df dy entering
the channel, The fraction of molecules that are in the velocity range- dV is
given by taking the marginal distribution fM v, which i1s obtained by inte-

grating equation (A3) over 6 from O to 2x 'and V from O to =/2 to give
£,y AV = 2pdvie P v (Ada)

Similarly, the marginal frequencies for € and V¥ after integrating over V
from O to o are

ae
f de = — Adb
M,6 27 ( 4 )

fM,w Ay = 2 cos ¥ sin ¥ dv (Ade)
We can pick from this distribution by setting the random number R equal
X
to the cumulative distribution function LR=.I. ka, dx' as in references 2
-0

and 3. Then the machine can pick a random number R and solve for the random
variable x from the previous relation. For equations (A4) this gives
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P
Ry =1 - Ry = (1 + p2vd)e PV - (l * X;) T (A5a)
Tg
2]
Ry = sin2y (Ase)

Solving for v in equation (A5a) for a given Ry 1s difficult because of its
form; however, v could be obtained in the following manner: If equation (A2)
is written in cylindrical coordinates,

v. £+ ady 22 202

1M = 2p27. e~B°V 2y =BV a9

Tm T 2p°Vye 1 av,2p=v e T av, == (A8)
where Vq =Vq, Vo =V, cos 6 and Vz =V, sin 6. Then as before the new
marginal distributions are

272
2 =BV
fy,v, 4V = 2pVpe BV avy (A7a)
2172
~ 232y B Vp
£y v, OV = 2p5V,e™ T aVy (A7)
This gives, as before,
BZVJZ_ = -1n Rl (A8a)
Then
e v% v%
Tg Ta Ty

This means we can choose VvV by using two random numbers in equation (A9).
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